Evidence-based Cardiovascular Disease Prevention for the Young Adult

Diet, Exercise and Supplementation

Donald F. Kreuz, MD FACC
Columbia University
Presentation Rational

• Cardiovascular disease (CVD)
 – Leading cause of morbidity and mortality
 – US & worldwide

• CVD prevention
 – Healthy lifestyle is important
 • Extensive amount of evidence exists
 – Achievable by modifying risk factors such as BP and lipids
 • Particular dietary patterns
 • Nutrient intake
 • Levels and types of physical activity
CVD and the Adolescents and Young Adults

- Early signs of atherosclerotic disease in high numbers
 - *PDAY autopsy study* of adolescents 15-19 years
 - All had aortic and approximately 50% had coronary atherosclerosis
 - ↑ number of risk factors (high lipids, smoking, HTN, DM) = ↑ prevalence
 - CV Health in children
 - *Predicts subsequent cardio-metabolic health in adulthood*
 - *Important to maintain healthy lifestyle behaviors early in life*

Preventing Heart Disease in the 21st Century: Implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study
Circulation, 2008 March
Presentation Rational

• Promoting prevention strategies
 – Clinicians play a major role
 – Choosing best advice is difficult
 • Plethora of information available

• Aim of this presentation
 – Review prevention strategies
 – Best evidence for beneficial outcomes
Presentation Outline

• Clinical Case

• I. Cardiovascular Disease and Risk Epidemiology
 – Scope of the problem
 – US population achieving current recommended goals
 • Diet and physical activity

• II. AHA/ACC 2013 Guidelines on Lifestyle Management
 – Dietary Patterns
 – Sodium Intake
 – Physical Activity

• III. Supplementation and CVD Risk Reduction

• IV. Latest Updates: 2013-2014
Clinical Case

• History
 – General
 • 20yo Male in good general health
 – Chief Complaint:
 • Clearance physical for volunteer work
 • Questions about preventive lifestyle
 – Medications: None
 – Supplements:
 • Fish oil 1,000mg 3x/day
 • Vitamin D 1,000mg daily
 • Vitamin E 400 IU daily
 • GNC protein supplement

• Social History
 • 3rd yr. pre-med
 • No tobacco use
 • Drinks 5 ETOH beverages a week
 • No substance use
 • Sexually active with women
 • Works out regularly

• Family History:
 • Father: MI age 49
Clinical Case

• Physical Examination:
 – Vitals:
 • BP 135/85, P 60, R 12, T 98.7
 • Height 5’ 10”, Weight 180 pounds, BMI 25.8
 – Normal physical examination

• Questions about Cardiovascular Disease Prevention
 – Concerned about father’s MI
 • Would like to prevent this from happening to him
 – Trainer/friend advised
 • Paleo diet
 • Use coconut oil instead of other vegetable oils
II. AHA/ACC 2013

Guidelines on Lifestyle Management to Reduce Cardiovascular Risk
2013 AHA/ACC Guidelines on Lifestyle Management to Reduce Cardiovascular Risk

- NHLBI initiated collaboration with AHA and ACC
- Review of current literature and guidelines (through 2011)
 - Particular dietary patterns, nutrient intake, and physical activity
 - Major role in CVD prevention and treatment
 - Through effects on modifiable CVD risk factors
 - Such as BP and lipids

2013 November
AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology
American Heart Association Task Force on Practice Guidelines
Circulation
These Prevention Guidelines differ from other ACC/AHA Guidelines

- Not an extensive collection of clinical information
- Scope and focus limited to critical questions in each topic
- Based on highest quality evidence available
 - Recommendations were derived from RTC’s, meta-analyses and observational studies evaluated for quality
 - Recommendations were not formulated when sufficient evidence was not available
2013 AHA/ACC Guidelines on Lifestyle Management to Reduce Cardiovascular Risk

• **Work Group formulated 3 critical questions (CQ)**
 – Greatest impact and relevance to the target audience, PCP
 – Body of report organized by CQ’s

• **Evidence statements**
 – Rating for strength of recommendations
 – Rating for strength of evidence

• **Results of the work group systematic review**
 – 10 dietary recommendations
 – 2 physical activity recommendations
Strength of Recommendation
NHLBI Grades

• **Grade A (Strong Recommendation)**
 – High certainty; net benefit substantial

• **Grade B (Mod Recommendation)**
 – Moderate certainty; net benefit moderate-substantial
 – High certainty; net benefit moderate

• **Grade C (Weak Recommendation)**
 – Moderate certainty; net benefit small

• **Grade D (Recommendation against)**
 – Moderate certainty; no net benefit or risks/harms outweigh benefits

• **Grade E (Expert opinion)**
 – Insufficient, unclear or conflicting evidence but Work Group recommends

• **Grade N (No recommendation)**
 – Not for or against
 – Insufficient, unclear or conflicting evidence
Strength of Evidence

Quality Rating

• **High**
 – Well designed, well executed RCT
 – Represents population results
 – Meta-analysis of such studies
 – High certainty about estimate of effect
 – Further research unlikely to change estimate of effect

• **Moderate**
 – RCT’s with minor limitations affecting confidence
 – Well designed, executed non-RTC or observational studies
 – Meta-analysis of such studies
 – Moderately certain about estimate of effect
 – Further research may have impact

• **Low**
 – RCT’s with major limitations affecting confidence
 – Non RCT’s or observational studies with major limitations
 – Uncontrolled clinical observations without appropriate comparison group (e.g. case series or case reports)
 – Physiological studies in humans
3 Critical Questions

- What is the effect of the following on CVD risk factors:
 - Among adults age ≥ 18 and < 80
 - Compared to no treatment or to other types of interventions

 CQ#1. Dietary patterns and macronutrient composition?

 CQ#2. Dietary intake of sodium and potassium?

 CQ#3. Physical activity?
Critical Question #1
Dietary Patterns and Macronutrients on BP and Lipids?

Mediterranean Dietary Pattern
DASH Dietary Pattern
Dietary Fat and Cholesterol Pattern
Critical Question #1
Dietary Patterns and Macronutrients on BP and Lipids?

• Rational
 – Nutrition plays a major role in modifying CVD risks
 – Dietary patterns rather than specific dietary components
 – Observational studies:
 • *Associations between intake and risk factors*
 – Intervention studies:
 • *Based on expert evidence and then evaluated in RCT’s (MED, DASH Diets)*
 – Lipid and BP were outcomes of focus
 • *CVD morbidity and mortality outcomes were not endpoints*
Mediterranean Dietary Pattern

- **High in:**
 - Vegetables (root and green varieties)
 - Fruits (particularly fresh)
 - Low-fat dairy products, poultry, fish
 - Whole grains-cereals, breads, pasta
 - Nuts (walnuts, almonds, hazelnuts)

- **Low in:**
 - Red meats (lean meats)

- **Use of healthier fats**
 - Olive or canola oil
 - *instead of butter or tropical oils such as palm*
 - Margarines blend with rapeseed or flaxseed oils
Mediterranean Dietary Pattern

• **High in:**
 – Polyunsaturated fatty acid
 • Particularly high in omega 3s
 – Fiber
 • 27-37 grams a day

• **Moderate in:**
 – Total fat
 • 32-35% of total calories

• **Low in:**
 – Saturated fat
 • 9-10% of calories
CQ 1. Mediterranean Pattern Diet on BP and Lipids?

- VS. minimal advice on low-fat diet

- Evidence For BP and Lipid Effect:
 - Strength of evidence: Low

<table>
<thead>
<tr>
<th>Mediterranean</th>
<th>BP</th>
<th>Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy, young</td>
<td>↓ 2-3/1-2 mmHg</td>
<td>No consistent effect LDL-C, HDL-C, TGL</td>
</tr>
<tr>
<td>Middle-aged, older</td>
<td>↓ 6-7/2-3 mmHg</td>
<td>No consistent effect LDL-C, HDL-C, TGL</td>
</tr>
<tr>
<td>3 RF or DM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DASH Dietary Pattern

• High in:
 – Vegetables, fruits
 – Whole grains, nuts
 – Poultry, fish

• Low in:
 – Sweets
 – Sugar-sweetened beverages
 – Red meats
DASH Dietary Pattern

- **High in:**
 - Potassium, Magnesium, Calcium
 - Protein
 - Fiber
- **Low in:**
 - Saturated fat
 - Total fat
 - Total cholesterol
DASH Dietary Pattern

CQ 1. DASH Pattern Diet on BP and Lipids?
- VS. typical American diet of the 1990’s

- **Evidence For BP and Lipid Effect:**
 - Similar in sub-populations
 - *Adults, AA and Non-AA, older, younger, male, female, w/wo HTN*
 - Strength of Evidence: High

<table>
<thead>
<tr>
<th>Dash</th>
<th>BP</th>
<th>LDL-C</th>
<th>HDL-C</th>
<th>TGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>↓ 5-6/3 mmHg</td>
<td>↓ 11 mg/dL</td>
<td>↓ 4 mg/dL</td>
<td>↔</td>
</tr>
</tbody>
</table>
CQ 1. DASH Pattern Diet on BP and Lipids?

- DASH Pattern Variations
- Carbohydrate (10% calories) replaced with Protein or Unsaturated fat
 - For example: 2,000 calories/day
 - 50g Carbohydrates → 50g Protein or 22g Unsaturated fat

- Evidence For BP Effect:
 - Strength of evidence: Moderate

<table>
<thead>
<tr>
<th>DASH + Carbohydrate → Protein or Unsaturated Fat</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults with BP of 120-159/80-95</td>
<td>↓ 1 mmHg</td>
</tr>
<tr>
<td>Adults with BP of 140-159/90-95</td>
<td>↓ 3 mmHg</td>
</tr>
</tbody>
</table>
CQ 1. DASH Pattern Diet on BP and Lipids?

- DASH Pattern Variations
- Carbohydrate (10% calories) replaced with Protein or Unsaturated fat
 - For example: 2,000 calories/day
 - 50g Carbohydrates → 50g Protein or 22g Unsaturated fat

- Evidence For Lipid Effect:
 - Strength of Evidence: Moderate

<table>
<thead>
<tr>
<th>DASH + Carbohydrate</th>
<th>LDL-C</th>
<th>HDL-C</th>
<th>Triglyceride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>↓ 3 mg/dL</td>
<td>↓ 1 mg/dL</td>
<td>↓ 16 mg/dL</td>
</tr>
<tr>
<td>Unsaturated Fat</td>
<td>↔ mg/dL</td>
<td>↑ 1 mg/dL</td>
<td>↓ 10 mg/dL</td>
</tr>
</tbody>
</table>
CQ 1. DASH Pattern Diet on BP and Lipids?

- DASH Pattern Variations
- For High glycemic diets vs. Low-glycemic diets

• Evidence For BP and Lipids:
 - Strength of Evidence: Insufficient

<table>
<thead>
<tr>
<th>DASH + High vs. Low Glycemic</th>
<th>BP and Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults without DM</td>
<td>Insufficient evidence to establish relationship</td>
</tr>
<tr>
<td>Adults with DM</td>
<td>Not reviewed</td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

Fat Sources

<table>
<thead>
<tr>
<th>Fats</th>
<th>Cholesterol & Triglycerides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated Fatty Acid (SFA)</td>
<td>Total Cholesterol</td>
</tr>
<tr>
<td>Trans-Fatty Acid (TFA)</td>
<td>LDL-C</td>
</tr>
<tr>
<td>Mono-Unsaturated Fatty Acid (MUFA)</td>
<td>HDL-C</td>
</tr>
<tr>
<td>Poly-Unsaturated Fatty Acid (PUFA)</td>
<td>TGL</td>
</tr>
<tr>
<td>Omega-3 Fatty Acid</td>
<td></td>
</tr>
<tr>
<td>Omega-6 Fatty acid</td>
<td></td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

Fat Sources

<table>
<thead>
<tr>
<th>Saturated Fat (SFA)</th>
<th>Trans Fat Sources (TFA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal sources:</td>
<td>“Partially hydrogenated oils”</td>
</tr>
<tr>
<td>Meat and dairy products</td>
<td>Fried</td>
</tr>
<tr>
<td>Plant sources:</td>
<td>Baked goods</td>
</tr>
<tr>
<td>Palm oil</td>
<td>Processed foods</td>
</tr>
<tr>
<td>Coconut oil</td>
<td>Small amount (meats, dairy)</td>
</tr>
</tbody>
</table>

Dietary Fat and Cholesterol Pattern

Fat Sources

<table>
<thead>
<tr>
<th>Mono-Unsaturated Fat (MUFA)</th>
<th>Polyunsaturated Fat (PUFA) Omega-6</th>
<th>Polyunsaturated Fat (PUFA) Omega-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleic acid (Ω-9)</td>
<td>Linoleic acid</td>
<td>α-Linolenic acid (ALA)</td>
</tr>
<tr>
<td>Palmitoleic acid (Ω-7)</td>
<td>Arachidonic acid</td>
<td>Eicosapentaenoic acid (EPA)</td>
</tr>
<tr>
<td>Cis-vaccenic acid (Ω-7)</td>
<td></td>
<td>Docosahexaenoic acid (DHA)</td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

Fat Sources

<table>
<thead>
<tr>
<th>Mono-Unsaturated Fat (MUFA)</th>
<th>Polyunsaturated Fat (PUFA) Omega-6</th>
<th>Polyunsaturated Fat (PUFA) Omega-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avocado</td>
<td>Plant oils:</td>
<td>Fish:</td>
</tr>
<tr>
<td>Nuts:</td>
<td>Corn oil</td>
<td>Herring</td>
</tr>
<tr>
<td>Almonds</td>
<td>Cotton seed</td>
<td>Sardines</td>
</tr>
<tr>
<td>Pecans</td>
<td>Soybean oil</td>
<td>Mackerel</td>
</tr>
<tr>
<td>Plant oils:</td>
<td>Peanut</td>
<td>Salmon</td>
</tr>
<tr>
<td>Canola oil</td>
<td></td>
<td>Nuts:</td>
</tr>
<tr>
<td>Olive oil</td>
<td></td>
<td>Walnuts</td>
</tr>
<tr>
<td>Safflower oil</td>
<td></td>
<td>Plant oils:</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td></td>
<td>Flaxseed</td>
</tr>
<tr>
<td>Peanut oil</td>
<td></td>
<td>Canola oil</td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

- **Plant Oils Per 1 Tablespoon (Total fat: 13-14gms)**

<table>
<thead>
<tr>
<th>Oil</th>
<th>Saturated</th>
<th>MUFA</th>
<th>PUFA</th>
<th>6-Ω/3-Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canola</td>
<td>1.0g</td>
<td>8.9g†</td>
<td>3.9g</td>
<td>2:1 ✓</td>
</tr>
<tr>
<td>Coconut</td>
<td>11.8g†</td>
<td>0.8g</td>
<td>0.2g</td>
<td>*</td>
</tr>
<tr>
<td>Corn</td>
<td>1.8g</td>
<td>3.8g</td>
<td>7.4g†</td>
<td>*</td>
</tr>
<tr>
<td>Cottonseed</td>
<td>3.5g</td>
<td>2.4g</td>
<td>7.1g†</td>
<td>*</td>
</tr>
<tr>
<td>Flaxseed</td>
<td>1.2g</td>
<td>2.5g</td>
<td>9.2g†</td>
<td>1:3 ✓</td>
</tr>
<tr>
<td>Olive</td>
<td>1.9g</td>
<td>9.9g†</td>
<td>1.4g</td>
<td>3-13:1 ↔</td>
</tr>
<tr>
<td>Peanut</td>
<td>2.3g</td>
<td>6.2g</td>
<td>4.3g</td>
<td>*</td>
</tr>
<tr>
<td>Safflower</td>
<td>1.0g</td>
<td>10.2g†</td>
<td>1.7g</td>
<td>*</td>
</tr>
<tr>
<td>Soybean</td>
<td>2.1g</td>
<td>3.1g</td>
<td>7.9g†</td>
<td>7:1 ↔</td>
</tr>
<tr>
<td>Sunflower</td>
<td>1.2g</td>
<td>7.8g†</td>
<td>3.9g</td>
<td>*</td>
</tr>
</tbody>
</table>

*No or minimal 3-Ω

Note: USDA
Dietary Fat and Cholesterol Pattern

- **Nuts Per 1 oz (Total fat calories: 170-200 calories)**

<table>
<thead>
<tr>
<th>Nuts</th>
<th>Saturated</th>
<th>MUFA</th>
<th>PUFA</th>
<th>6-Ω/3-Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almond</td>
<td>1.1g</td>
<td>8.9g</td>
<td>3.5g</td>
<td>27:1</td>
</tr>
<tr>
<td>Hazel nut</td>
<td>1.3g</td>
<td>13.2</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Cashews</td>
<td>2.6g ↑</td>
<td>7.7g</td>
<td>2.2g</td>
<td></td>
</tr>
<tr>
<td>Macadamia</td>
<td>3.4g ↑</td>
<td>16.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Pecans</td>
<td>1.8g</td>
<td>11.6g</td>
<td>6.2g</td>
<td>22:1</td>
</tr>
<tr>
<td>Pistachios</td>
<td>1.6g</td>
<td>6.7g</td>
<td>3.8g</td>
<td></td>
</tr>
<tr>
<td>Walnut</td>
<td>1.7g</td>
<td>2.5g</td>
<td>13.4g</td>
<td>4-5:1</td>
</tr>
</tbody>
</table>

*No or minimal 3-Ω
Dietary Fat and Cholesterol Pattern

<table>
<thead>
<tr>
<th>Per Serving</th>
<th>Walnut</th>
<th>Avocado</th>
<th>Salmon</th>
<th>Rib-eye lean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td>185 calories (1oz)</td>
<td>59 calories (1oz)</td>
<td>177 calories (3oz)</td>
<td>233 calories (3oz)</td>
</tr>
<tr>
<td>Total fat</td>
<td>18.0g 162 calories</td>
<td>5.4g 49 calories</td>
<td>11.4g 103 calories</td>
<td>18.8g 168 calories</td>
</tr>
<tr>
<td>SFA</td>
<td>1.7g 9%</td>
<td>0.8g 15%</td>
<td>2.6g 23%</td>
<td>7.7g 41%↑↑</td>
</tr>
<tr>
<td>MUFA</td>
<td>2.5g 14%</td>
<td>3.5g 65%↑↑</td>
<td>3.2g 28%↑</td>
<td>8.2g 44%↑↑</td>
</tr>
<tr>
<td>PUFA 6-Ω/3-Ω</td>
<td>13g 4-5:1 72%↑↑√</td>
<td>0.6g 11%</td>
<td>3.3g 29%↑√</td>
<td>0.7g 4%</td>
</tr>
</tbody>
</table>

USDA
Dietary Fat and Cholesterol Pattern

• US Daily Calories and Fat Intake:

 – Total Calories/day
 • Total fat intake: 33%
 • Saturated fat intake: 11%

 Men
 2,500 calories
 92g/day
 31g/day

 Women
 1,800 calories
 66g/day
 22g/day
Dietary Fat and Cholesterol Pattern

CQ 1. Dietary Fat Diet on Lipids?
- Lowered SFA and Total Fat
- Pattern
 - Control Diet vs. Study Diet
 - Saturated Fatty Acid: 14%-15% vs. 5%-6%
 - Total fat: 34%-38% vs. 26-27%
 - Protein: 13%-15% vs. 15-18%
 - Carbohydrate: 48-51% vs. 55-59%

Evidence For Lipid Effect:
- Strength of Evidence: High

<table>
<thead>
<tr>
<th>Control Diet</th>
<th>LDL-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Diet (Lower SFA & TF)</td>
<td>↓ 11-13 mg/dL</td>
</tr>
</tbody>
</table>

E.g. 2,000 calories/day
- 33g → 13g
- 84g → 64g
- 33g → 40g
- 255g → 295g
CQ 1. Dietary Fat Diet on Lipids?

- SFA (1% calories) replaced by Carbohydrates, MUFA or PUFA (1% calories):
 - For example: 2,000 calories/day
 - 2.2g SFA → 5g Carbohydrates, 2.2g MUFA or 2.2g PUFA

- Evidence For Lipid Effect:
 - Strength of Evidence: Moderate

<table>
<thead>
<tr>
<th>SFA</th>
<th>LDL-C</th>
<th>HDL-C</th>
<th>Triglyceride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>↓ 1.2 mg/dL</td>
<td>↓ 0.4 mg/dL</td>
<td>↑ 1.9 mg/dL</td>
</tr>
<tr>
<td>MUFA</td>
<td>↓ 1.3 mg/dL</td>
<td>↓ 1.2 mg/dL</td>
<td>↑ 0.2 mg/dL</td>
</tr>
<tr>
<td>PUFA</td>
<td>↓ 1.8 mg/dL</td>
<td>↓ 0.2 mg/dL</td>
<td>↓ 0.4 mg/dL</td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

CQ 1. Dietary Fat Diet on Lipids?
- Carbohydrates (1% calories) replaced by MUFA or PUFA (1% calories)
 - *For example: 2,000 calories/day*
 - *5g Carbohydrates → 2.2g MUFA or 2.2g PUFA*

Evidence For Lipids Effect:
- Strength of Evidence: Moderate

<table>
<thead>
<tr>
<th>Carbohydrates</th>
<th>LDL-C</th>
<th>HDL-C</th>
<th>Triglyceride</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUFA</td>
<td>↓ 0.3 mg/dL</td>
<td>↑ 0.3 mg/dL</td>
<td>↓ 1.7 mg/dL</td>
</tr>
<tr>
<td>PUFA</td>
<td>↓ 0.7 mg/dL</td>
<td>↑ 0.2 mg/dL</td>
<td>↓ 2.3 mg/dL</td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

CQ 1. Dietary Fat Diet on Lipids?

- TFA (1% calories) replaced by MUFA, PUFA, SFA or Carb (1% calories)
 - For example: 2,000 calories/day
 - 2.2g TFA → 2.2g MUFA, 2.2g PUFA, 2.2g SFA or 5g Carbohydrates

- Evidence For Lipids Effect:
 - Strength of Evidence: Moderate

<table>
<thead>
<tr>
<th>TFA</th>
<th>LDL-C</th>
<th>HDL-C</th>
<th>Triglyceride</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUFA</td>
<td>↓ 1.5 mg/dL</td>
<td>↑ 0.4 mg/dL</td>
<td>↓ 1.2 mg/dL</td>
</tr>
<tr>
<td>PUFA</td>
<td>↓ 2.0 mg/dL</td>
<td>↑ 0.5 mg/dL</td>
<td>↓ 1.3 mg/dL</td>
</tr>
<tr>
<td>SFA</td>
<td></td>
<td>↑ 0.5 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>↓ 1.5 mg/dL</td>
<td>↔</td>
<td>↔</td>
</tr>
</tbody>
</table>
Dietary Fat and Cholesterol Pattern

CQ 1. Dietary Cholesterol Diet on Lipids?
- Dietary cholesterol reduction

Evidence For Lipid Effect:
- Strength of Evidence: Insufficient

<table>
<thead>
<tr>
<th>Cholesterol</th>
<th>Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowering dietary cholesterol</td>
<td>Insufficient evidence: for LDL-C reduction</td>
</tr>
</tbody>
</table>
Critical Question #1
Dietary Patterns and Macronutrients on BP and Lipids?

• Recommendations
 – Advise adults who would benefit from LDL–C or BP lowering to:
 • Emphasize intake of vegetables, fruits, whole grains
 • Include low-fat dairy products, poultry, fish, legumes, non-tropical vegetable oils, nuts
 • Limit intake of sweets, sugar-sweetened beverages, red meats
 • Adapt to appropriate calorie requirements, personal and cultural food preferences, and nutrition therapy for other medical conditions (e.g. DM).
 • Achieve this pattern by following plans such as DASH dietary pattern, the USDA Food Pattern, or AHA Diet.
 – Grade of recommendation: Strong
Critical Question #1
Dietary Patterns and Macronutrients on BP and Lipids?

- Recommendations
 - Advise adults who would benefit from **LDL-C lowering** to:
 - *Reduce % of calories for SFA*
 - Aim for 5-6% of calories from SFA
 - Current US intake: 11%
 - *Reduce % of calories from TFA*
 - *Favorable effect on lipids with replacement by PUFA, MUFA, then Carb (whole grain preferred over refined)*
 - Grade of recommendation: Strong
Critical Question #2
Dietary Sodium & Potassium Intake on BP and CVD Outcomes?
Critical Question #2
Dietary Sodium & Potassium Intake on BP and CVD Outcomes?

• **Rational:**
 – Minerals sodium and potassium
 • *Associated with CVD risk factors and outcomes*
 – Other minerals, e.g., calcium, magnesium
 • *Not reviewed*
 • *Consumption is limited to few foods or food groups*
 • *Recommendation unlikely to increase or decrease consumption of mineral (rather than the food)*
Sodium Intake

• US Daily Sodium Intake:
 – 3,400-3,500mg/day

• Top Sources:
 – Bread and rolls (7.4%)
 – Cold cuts & cured meats (5.1%)
 – Pizza (4.9%)
 – Soups (4.3%)
Sodium Intake

- **US Daily Sodium Intake:**
 - 3,400-3,500mg/day

Table salt
(1 teaspoon = 6g)
2,325mg

<table>
<thead>
<tr>
<th>Food</th>
<th>Sodium (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread (#1 slice)</td>
<td>328mg</td>
</tr>
<tr>
<td>Plain hotdog (#1 piece)</td>
<td>567mg</td>
</tr>
<tr>
<td>Cheese pizza (#1 slice)</td>
<td>640mg</td>
</tr>
<tr>
<td>Chicken noodle soup (#1 cup)</td>
<td>343mg</td>
</tr>
</tbody>
</table>

USDA Medical Services
Sodium Intake

CQ2: Sodium Intake on BP?
 – Reducing Sodium intake

• Evidence For BP Effect:
 – Strength of evidence: High

<table>
<thead>
<tr>
<th>Sodium Intake</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing Sodium intake</td>
<td>↓ BP</td>
</tr>
</tbody>
</table>
Sodium Intake

CQ2: Sodium Intake on BP?
- Reducing Sodium intake measured by 24-hour urinary sodium excretion

- Evidence For BP Effect:
 - Strength of evidence: Moderate

<table>
<thead>
<tr>
<th>Sodium Urinary Excretion</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing Sodium urinary excretion 3,300 mg/day → 2,400 mg/day</td>
<td>↓ 2/1 mmHg</td>
</tr>
<tr>
<td>Reducing Sodium urinary excretion 3,300 mg/day → 1,500 mg/day</td>
<td>↓ 7/3 mmHg</td>
</tr>
</tbody>
</table>
Sodium Intake

CQ2: Sodium Intake on BP?

- Counseling to reduce sodium <1,500 mg/day

- Evidence For BP Effect:
 - Strength of evidence: High
 - Similar in sub-populations
 - Adults with pre-HTN or HTN: In Men, Women, AA and Non AA, young and old

<table>
<thead>
<tr>
<th>Sodium intake</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counseling to reduce Sodium intake <1,500 mg/day</td>
<td>↓ 3-4/1-2 mmHg</td>
</tr>
</tbody>
</table>
Sodium + DASH Diet

CQ2: Sodium Intake + DASH Diet on BP?

- Reducing Sodium intake + DASH dietary pattern

Evidence For BP Effect:

- Strength of evidence: Moderate

<table>
<thead>
<tr>
<th>Sodium Intake</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing Sodium intake + DASH vs. Reducing Sodium intake alone</td>
<td>More BP lowering</td>
</tr>
</tbody>
</table>
Sodium Intake

CQ2: Sodium Intake on CVD Outcomes?

- Sodium intake and CVD events

- Evidence For CVD Outcomes:
 - Strength of evidence: Low

<table>
<thead>
<tr>
<th>Sodium Intake</th>
<th>CVD Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing Sodium intake by 1,000 mg/day</td>
<td>↓ CVD events 30%</td>
</tr>
<tr>
<td>Higher Sodium intake</td>
<td>Associated with ↑ risk of fatal and non-fatal stroke and CVD</td>
</tr>
</tbody>
</table>
Potassium Intake

CQ2: Potassium Intake on BP and CVD Outcomes?
 - Increasing dietary Potassium intake

• Evidence For BP and CVD Outcome Effect:
 - Strength of evidence: Insufficient (BP)
 - Strength of evidence: Low (CVD outcome)

<table>
<thead>
<tr>
<th>Potassium Intake</th>
<th>BP</th>
<th>CVD Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing Potassium intake</td>
<td>Insufficient evidence: BP reduction</td>
<td>Associated with ↓ stroke risk</td>
</tr>
</tbody>
</table>
Critical Question #2
Dietary Sodium & Potassium Intake on BP and CVD Outcomes?

• Recommendations:
 – Advise adults who would benefit from BP lowering to:
 • Lower sodium intake
 • Consume no more than 2,400 mg/day of sodium
 • Further reduction to 1,500 mg/day is desirable
 • Reduce sodium intake by at least 1,000 mg/day even if the desired daily sodium intake is not achieved
 • Combine DASH dietary pattern with lower sodium intake
 – Recommendation grade: Strong-Moderate
Critical Question #3
Physical Activity on BP and Lipids?
Critical Question #3
Physical Activity on BP and Lipids?

• Rational:
 – Large observational data associate ↑ levels of physical activity with:
 • ↓ CVD and other chronic diseases
 • Prolonged longevity
 • Inverse dose response, curvilinear relationship
 – Elimination of physical inactivity worldwide lead to:
 • Estimated 6% ↓ in CHD
 • 0.68 year ↑ longevity
 – Propose mechanism: effect of exercise on Lipids and BP
 • HTN reduction: 27% ↓ in CVD rates
 • Lipid reduction: 19% ↓ in CVD rates
CQ3: Physical Activity on Lipids?
- Aerobic physical activity vs. Control

- **Evidence For Lipid Effect:**
 - Strength of evidence: Moderate

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>LDL-C</th>
<th>Non-HDL-C</th>
<th>HDL-C</th>
<th>TGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic physical activity</td>
<td>↓ 3-6 mg/dL</td>
<td>↓ 6 mg/dL</td>
<td>Not consistent</td>
<td>Not consistent</td>
</tr>
</tbody>
</table>
Physical Activity

CQ3: Physical Activity on BP?

– Aerobic exercise training vs. Control
– Adult men and women at all BP levels
– 3-4 sessions/week, 40 minutes/session, moderate to vigorous intensity
– 12 weeks duration

• Evidence for BP Effect:
 – Strength of evidence: High

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>SBP</th>
<th>DBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic exercise training</td>
<td>↓ 2-5 mmHg</td>
<td>↓ 1-4 mmHg</td>
</tr>
</tbody>
</table>
Physical Activity

CQ3: Physical Activity on BP and Lipids?

– Resistance exercise training vs. Control
– \geq3 days/week, 9 exercises performed for 3 sets and 11 repetitions at an average of 70% of 1 maximal repetition
– 24 weeks duration

• Evidence for BP and Lipid Effect:
 – Strength of Evidence Low

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>LDL-C</th>
<th>Non-HDL-C</th>
<th>HDL-C</th>
<th>TGL</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance exercise training</td>
<td>↓ 6-9 mg/dL</td>
<td>↓ 6-9 mg/dL</td>
<td>↔</td>
<td>↓ 6-9 mg/dL</td>
<td>Insufficient evidence</td>
</tr>
</tbody>
</table>
Critical Question #3
Physical Activity on BP and Lipids?

• **Recommendations:**
 – Advise aerobic physical activity for **LDL-C and non-HDL-C and/or BP lowering**:
 • 3-4 sessions/week, 40 minute/sessions, moderate to vigorous intensity
 – 2.5 hrs/wk of moderate intensity, such as brisk walking
 – 1.25 hrs/wk of vigorous intensity
 – 12 METS/week in general
 • *Dose/response relationship*
 – Additional benefits occur with higher intensity, frequency and duration
 – Some is better than none
III. Supplementation & CVD Risk Reduction

Vitamins
Anti-oxidants
Fish oils
Vitamin D
Supplementation and CVD Risk Reduction

• Rational:
 – Many studies examined associations between particular vitamins and CVD
 – Antioxidant vitamin (Vitamins A, C, and E; β-carotene; and folic acid) deficiencies
 • Associated with blood vessel changes that occur in CVD
 – Perhaps taking these vitamins might decrease CVD
 – Studies have varied in quality and their results often conflict
Antioxidant Supplements

Antioxidant Supplements to Lower/Increase All-cause Mortality?

– Review of 78 randomized clinical trials; 1977-2012
– 296,707 participants; mean age: 63 yo
– Antioxidant supplements
 • *Beta carotene, vitamin A, C, E, selenium*
 • *Vs. placebo or no intervention*
– Primary outcome: All-cause mortality

2013 September
Antioxidant Supplements to Prevent Mortality
JAMA
Antioxidant Supplements to Lower/Increase All-cause Mortality?

<table>
<thead>
<tr>
<th>Antioxidant Supplements</th>
<th>All-cause Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidants</td>
<td>NOT associated with lower all-cause mortality</td>
</tr>
<tr>
<td>Beta carotene, vitamin E, and higher doses of vitamin A</td>
<td>Associated with higher all-cause mortality</td>
</tr>
</tbody>
</table>

2013 September

Antioxidant Supplements to Prevent Mortality

JAMA
Vitamin, Mineral, and MVI Supplements to Prevent CVD and Cancer?

- U.S. Preventive Services Task Force Recommendations
- Healthy adults, typically aged ≥50 years, no special nutritional needs

<table>
<thead>
<tr>
<th>Vitamin Supplements</th>
<th>CV Disease and Cancer Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVI and/or single- or paired-nutrient supplements</td>
<td>Insufficient evidence</td>
</tr>
<tr>
<td>Beta carotene and vitamin E</td>
<td>Recommends against use</td>
</tr>
</tbody>
</table>

2014 February
Vitamin, Mineral, and Multivitamin Supplements to Prevent CV Disease and Cancer
Annals of Intern Medicine
Fish Oil

Fish Oil to Reduce CV Morbidity and Mortality?

– Large general-practice, double-blind, placebo-controlled clinical trial
– 12,513 participants with multiple CV risk factors
– n–3 fatty acids
 • Eicosapentaenoic acid (EPA) & Docosahexaenoic acid (DHA)
 • Vs. placebo
– Primary endpoint: death, nonfatal MI and nonfatal stroke

2013 May
N-3 Fatty Acids in Patients with Multiple CV Risk Factors
New England Journal of Medicine
Fish Oil

Fish Oil to Reduce CV Morbidity and Mortality?

<table>
<thead>
<tr>
<th>Fish oils</th>
<th>CV Morbidity and Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>N–3 fatty acids</td>
<td>No reduction</td>
</tr>
</tbody>
</table>

2013 May

N-3 Fatty Acids in Patients with Multiple CV Risk Factors

New England Journal of Medicine
Vitamin D

Vitamin D and Cardiovascular Disease?

- Low 25-OH D levels associated with hypertension
 - Dietary salt loading results in ↑ BP worse with vitamin D deficiency
 - Inverse relationship between vitamin D metabolites and plasma renin activity
- Vitamin D trials report show no BP changes or small reductions in BP
- Several meta-analyses and systematic reviews have conflicting conclusions

2013 June

Vitamin D and Cardiovascular Disease: Is the Evidence Solid?

European Heart Journal
Vitamin D to Reduce BP?

- Double-blind, placebo-controlled randomized trial
- 159 patient, >70 yo with SBP >140
- 100,000 U oral cholecalciferol vs. placebo every 3 months for 1 year

2013 October

Cholecalciferol treatment to reduce BP in older patients with isolated systolic hypertension

JAMA
Vitamin D to Reduce BP?

<table>
<thead>
<tr>
<th>Vitamin D</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Cholecalciferol</td>
<td>No effect</td>
</tr>
</tbody>
</table>

2013 October

Cholecalciferol treatment to reduce BP in older patients with isolated systolic hypertension

JAMA
Red Yeast Rice to Lower Cholesterol?

- Contains monacolin K
 - Chemical structure as lovastatin (inhibitor of HMG-CoA reductase)
Red Yeast Rice to Lower Cholesterol?

<table>
<thead>
<tr>
<th>Red Yeast Rice</th>
<th>Cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>RYR products containing substantial Monacolin K</td>
<td>Lowers TC and LDL-C</td>
</tr>
<tr>
<td>RYR products containing very little Monacolin K</td>
<td>No effect</td>
</tr>
</tbody>
</table>

- Marked Monacolin K variability in commercial RYR products
- Several products contain citrinin (potentially nephrotoxic mycotoxin)
- Case reports of myopathy and rhabdomyolysis
- FDA (1998): RYR product with substantial amount no longer dietary supplement

2013 April

Complementary and Alternative Medicine and CVD: An Evidence-Based Review
Evidence-Based Complementary and Alternative Medicine
Miscellaneous Supplements and CVD Risk?

<table>
<thead>
<tr>
<th>Supplements</th>
<th>CV Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic</td>
<td>No significant difference in LDL-C, HDL-C, TGL, or TC-HDL-C ratio
Associated with ↓ BP (10-12/6-9mmHg) in patients with elevated SBP
Insufficient evidence: reducing CV morbidity and mortality risk</td>
</tr>
<tr>
<td>Ginseng</td>
<td>No significant effect on BP, lipid profile</td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>No BP reduction
No total or CVD mortality or events reduction</td>
</tr>
</tbody>
</table>

2013 April

Complementary and Alternative Medicine and CVD: An Evidence-Based Review

Evidence-Based Complementary and Alternative Medicine
Testosterone Therapy

Testosterone therapy and CVD Outcome among Men?

- Retrospective analysis among male veterans
- 8,709 men with low testosterone levels
 - Started on testosterone therapy
- Primary outcome: Mortality, MI, stroke

2013 November
Association of Testosterone Therapy With Mortality, MI, and Stroke in Men With Low Testosterone Levels
JAMA
Testosterone Therapy and CVD Outcome among Men?

<table>
<thead>
<tr>
<th>Testosterone Therapy</th>
<th>CVD Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men With or Without CAD</td>
<td>Higher all-cause mortality</td>
</tr>
<tr>
<td></td>
<td>Higher MI</td>
</tr>
<tr>
<td></td>
<td>Higher stroke</td>
</tr>
</tbody>
</table>

2013 November

Association of Testosterone Therapy With Mortality, MI, and Stroke in Men With Low Testosterone Levels

JAMA
IV.

Latest Updates 2013-2014

Sodium Intake
Fatty Acids
Dietary Patterns & Micronutrients
Latest Updates:
Sodium Intake
Sodium Intake and Risk of CVD?

- Institute of Medicine Committee (IOM) review and assessment
- Sodium intake reduction to 1,500-2,300 mg per day
 - General population (average Sodium intake: 3,400mg/day)
 - Subgroups: hypertension and prehypertension, > 51 yo, AA, DM, CKD, CHF
- Association with risk of heart disease, stroke, or all-cause mortality

2013 May

Sodium Intake in Populations: Assessment of Evidence
IOM, The National Academies Press
Sodium Intake and Risk of CVD?

<table>
<thead>
<tr>
<th>Sodium intake In General Population</th>
<th>CVD Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease excessive Sodium intake (e.g. ≤2,300 mg/day)</td>
<td>Evidence supports health outcome benefit</td>
</tr>
<tr>
<td>Sodium intake 1,500-2300 mg/day</td>
<td>Insufficient and inconsistent evidence Additional observational & randomized controlled trials</td>
</tr>
<tr>
<td>Sodium intake <1,500 day</td>
<td>No evidence for benefit</td>
</tr>
</tbody>
</table>

2013 May
Sodium Intake in Populations: Assessment of Evidence
IOM, The National Academies Press
Sodium Intake and Risk of CVD?

<table>
<thead>
<tr>
<th>Sodium intake In Population Group</th>
<th>CVD Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium intake 1,500-2,300mg day in population subgroups</td>
<td>No evidence for benefit Some evidence for risk of adverse health outcomes: DM, CRD, CVD</td>
</tr>
<tr>
<td>Low sodium intake in population subgroups</td>
<td>Higher risk of adverse health effects: Mod-severe CHF patients and receiving aggressive therapeutic regimens</td>
</tr>
</tbody>
</table>
Sodium Intake

Sodium Intake and Risk of CVD?

– 2,275 men and women ages 30-54 years
 • with high normal BP (pre-hypertension)
– Multiple 24-hour urine sodium excretion
– Primary endpoints:
 • CVD including (MI), stroke, CABG, PTCA
 • CVD death

2014 January
TOHP (Trials of Hypertension Prevention) evaluated Supplement and Lifestyle Interventions on BP Circulation
Sodium Intake and Risk of CVD?

<table>
<thead>
<tr>
<th>Sodium Intake</th>
<th>CVD Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every 1,000mg/day Sodium excretion</td>
<td>17% linear ↑ in CVD risk</td>
</tr>
<tr>
<td>↓ 3,600mg/day → 2,300mg/day</td>
<td>Linear association ↓ in CV events</td>
</tr>
<tr>
<td>↓ 3,600mg/day → 1,500mg/day</td>
<td>Linear association ↓ in CV events (data were sparse)</td>
</tr>
<tr>
<td>Conclusion: reducing sodium intake to 1500 - 2300mg/day</td>
<td>Consistent with overall health benefits in the majority of the population</td>
</tr>
</tbody>
</table>

2014 January
TOHP (Trials of Hypertension Prevention) evaluated Supplement and Lifestyle Interventions on BP
Circulation
Sodium Intake

- The Institute of Medicine (IOM)
 - Salt restriction is necessary
 - No evidence of safety and efficacy for <2,300 mg/day
- American Heart Association (AHA)
 - <1500 mg/day
- World Health Organization (WHO)
 - <2000 mg/day
- Dietary Guidelines for Americans
 - <2300 mg/day
 - <1500 mg for persons >51 years, AA, DM, HTN, and CKD
Latest Updates:

Fatty Acids
Fatty Acids

Fatty acids (SFA, TFA, PUFA) and Coronary Disease Risk?

- Meta-analysis of over 70 reports, including observational studies and randomized controlled trials
- 512,420 participants
- Fatty acid dietary intake, supplementation, and biomarkers
- Association with coronary disease

2014 March
Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk: A Systematic Review and Meta-analysis
Annals of Internal Medicine
Fatty Acids

Fatty acids (SFA, TFA, PUFA) and Coronary Disease Risk?

<table>
<thead>
<tr>
<th>Fats</th>
<th>Coronary Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFA</td>
<td>No association</td>
</tr>
<tr>
<td>TFA</td>
<td>Associated with ↑ risk</td>
</tr>
<tr>
<td>MUFA</td>
<td>No association</td>
</tr>
<tr>
<td>Omega 3 and Omega 6 PUFA</td>
<td>No significant reduction (trend)</td>
</tr>
<tr>
<td>Conclusion:</td>
<td></td>
</tr>
<tr>
<td>Reduced consumption of SFA or High consumption of PUFA</td>
<td>Findings do not clearly support CV guidelines</td>
</tr>
</tbody>
</table>

2014 March

Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk: A Systematic Review and Meta-analysis
Annals of Internal Medicine
Latest Updates:
Dietary Patterns & Macronutrients

Fruits & Vegetables, Nuts, Flavinoids
Mediterranean Diet, Vegetarian Diet
Added Sugar, Diet drinks
Fruits & Vegetables in Young Adults to Lower Coronary Atherosclerosis?

- Coronary Artery Risk Development in Young Adults (CARDIA) study
- 2648 men and women aged 18 to 30yo
- 20 year diet assessment
- Long-term benefits assessed by coronary artery calcification (CAC)

2014 April

The Association of Fruit and Vegetable Consumption during Early Adulthood With the Prevalence of Coronary Artery Calcium after 20 years of Follow-up

Journal of the American College of Cardiology
Fruits & Vegetables in Young Adults to Lower Coronary Atherosclerosis?

<table>
<thead>
<tr>
<th>Fruits & Vegetables</th>
<th>Coronary Artery Calcification (CAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women:</td>
<td></td>
</tr>
<tr>
<td>Top third consumers (8.8 servings) vs. Bottom third consumers (3.3 servings)</td>
<td>40% less likely to have coronary plaque</td>
</tr>
<tr>
<td>Men</td>
<td>No relationship</td>
</tr>
<tr>
<td></td>
<td>(may be underpowered for detection)</td>
</tr>
</tbody>
</table>

2014 April
The Association of Fruit and Vegetable Consumption during Early Adulthood With the Prevalence of Coronary Artery Calcium after 20 years of Follow-up
Journal of the American College of Cardiology
Nuts

Nuts to Lower Total and Specific-Cause Mortality?

– Large observational analysis
– 76,464 women in the Nurses’ Health Study (1980-2010)
– 42,498 men in the Health Professionals Follow-Up Study (1986-2010)

2013 November
Association of Nut Consumption With Total and Cause-Specific Mortality
New England Journal of Medicine
Nuts to Lower Total and Specific-Cause Mortality?

<table>
<thead>
<tr>
<th>Nuts</th>
<th>Total & Specific Cause Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of nut consumption (both peanuts and</td>
<td>Independently and inversely associated with total and</td>
</tr>
<tr>
<td>tree nuts)</td>
<td>cause-specific mortality</td>
</tr>
<tr>
<td>FDA Recommendation: 43 g (1.5 oz.) of nuts per</td>
<td>May have beneficial cardiovascular effects</td>
</tr>
<tr>
<td>day (as part of a low-fat diet)</td>
<td></td>
</tr>
</tbody>
</table>

2013 November

Association of Nut Consumption With Total and Cause-Specific Mortality

New England Journal of Medicine
Dietary Flavonoids (Anthocyanins) to Lower MI Risk among Women?

- Data from the Nurses’ Health Study (NHS) II
- 93,600 women, ages 25-42 years, healthy at baseline
- Food intake questionnaire on anthocyanin-rich foods
 - Fruits (e.g. apples, strawberries, and blueberries), vegetables (e.g. onion, eggplant), tea, and wine

2013

High Anthocyanin Intake Is Associated With a Reduced Risk of MI in Young and Middle-Aged Women

Circulation
Flavonoids

Dietary Flavonoids (Anthocyanins) to Lower MI Risk among Women?

<table>
<thead>
<tr>
<th>Anthocyanins (Flavonoids)</th>
<th>MI Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthocyanin-rich foods (blueberries and strawberries) >3 servings/week</td>
<td>Decreased: Hazard Ratio 0.66 (Note: Not a randomized trial Anthocyanin group participants have healthier lifestyle = smoke less, exercise more)</td>
</tr>
<tr>
<td>Other flavonoid foods</td>
<td>No effect</td>
</tr>
</tbody>
</table>

2013

High Anthocyanin Intake Is Associated With a Reduced Risk of MI in Young and Middle-Aged Women

Circulation
Vegetarian Dietary Pattern to Lower Mortality?

- Prospective cohort study (Adventist Health Study)
- 96,469 Seventh-day Adventist men and women 2002-2007
- Five dietary patterns:
 - non-vegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo–vegetarian and vegan
- Association with all-cause and cause-specific mortality

2013 June
Vegetarian Dietary Patterns and Mortality in Adventist Health Study 2
JAMA
Vegetarian Diet Patterns to Lower Mortality?

<table>
<thead>
<tr>
<th>Dietary patterns</th>
<th>Mortality</th>
</tr>
</thead>
</table>
| Vegetarian diets | Lower all-cause mortality and with some reductions in cause-specific mortality
Results appeared to be more robust in males |
Vegetarian Diet

Vegetarian Dietary Pattern to Lower Blood Pressure?

- Systematic review and meta-analysis
 - 7 controlled clinical trials (311 participants)
 - 32 observational studies (21,604 participants)
- Mean age 44-46yo
- Association between vegetarian diets and BP

2014 April
Vegetarian Diets and Blood Pressure
JAMA
Vegetarian Dietary Pattern to Lower Blood Pressure?

<table>
<thead>
<tr>
<th>Dietary patterns</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetarian diets vs. Omnivorous diets</td>
<td>Lower BP (4.8 mmHg/2.2 mmHg) in controlled clinical trials</td>
</tr>
<tr>
<td></td>
<td>Lower BP (6.9 mmHg/4.7 mmHg) in observational studies</td>
</tr>
</tbody>
</table>

2014 April
Vegetarian Diets and Blood Pressure
JAMA
Mediterranean Diet

Mediterranean Diet to Reduce Cardiovascular Event?

– Multicenter randomized trial
– 7,447 participants with high CV risk (HTN, DM, hyperlipidemia)
 • But with no CV disease
– Control diet (advised to reduce dietary fat) vs.
 • Mediterranean diet supplemented with extra-virgin olive oil or
 • Mediterranean diet supplemented with mixed nuts
– Primary end point: major CV events (MI, stroke, or CV death)

2013 May
Primary Prevention of Cardiovascular Disease With a Mediterranean Diet
New England Journal of Medicine
Mediterranean Diet to Reduce Cardiovascular Event?

<table>
<thead>
<tr>
<th>Dietary Patterns</th>
<th>CV Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediterranean diet with olive oil</td>
<td>↓ Incidence of major CV events (HR 0.70)</td>
</tr>
<tr>
<td>Mediterranean diet with nuts</td>
<td>↓ Incidence of major CV events (HR 0.70)</td>
</tr>
</tbody>
</table>

2013 May

Primary Prevention of Cardiovascular Disease With a Mediterranean Diet

New England Journal of Medicine
Mediterranean Diet

Mediterranean Diet to Reduce CV Risk Factors?

– Multicenter, randomized, primary prevention trial
– 772 participants with high CVD risk
– Low-fat diet vs.
 • Mediterranean diet with olive oil or
 • Mediterranean diet with tree nuts
– Primary outcomes: glucose levels, BP, lipid profile & CRP at 3 months

2014 February
Effects of a Mediterranean-Style Diet on Cardiovascular Risk Factors: A Randomized Trial
Ann Intern Med
Mediterranean Diet to Reduce CV Risk Factors?

<table>
<thead>
<tr>
<th>Dietary Patterns</th>
<th>Glucose</th>
<th>SBP</th>
<th>TC/HDL-C</th>
<th>CRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediterranean + Olive oil</td>
<td>-7.02 mg/dl</td>
<td>-5.9 mmHg</td>
<td>-0.38</td>
<td>-0.54 mg/L</td>
</tr>
<tr>
<td>Mediterranean + Tree nuts</td>
<td>-5.4 mg/dl</td>
<td>-7.1 mmHg</td>
<td>-0.26</td>
<td>-0.54 mg/L</td>
</tr>
</tbody>
</table>

2014 February
Effects of a Mediterranean-Style Diet on Cardiovascular Risk Factors: A Randomized Trial
Ann Intern Med
Added Sugar

• **US Daily Added Sugar Consumption:**

 – **Men**

 • 355 calories/day
 • 22 tsp/day

 – **Women**

 • 339 calories/day
 • 21 tsp/day

 – 155 calories/day from sugar-sweetened beverages
Added Sugar

- US Daily Added Sugar Consumption:
 - 340-355 calories/day
 - 21-22 tsp/day

Granulated sugar
(1 teaspoon = 4.2g)
16 calories

Soda beverage
(#1 can, 12 oz)
39g
8 ½ tsp

Ice cream vanilla
(# ½ cup)
14g
4 tsp

Chocolate bar
(#1 bar, 43g)
24g
6 tsp

Chocolate cake
(#1 piece, 1/8th, 64g)
26g
6 ½ tsp

USDA Granulated sugar
(1 teaspoon = 4.2g)
16 calories
Added Sugar Consumption and CVD mortality?

- National Health and Nutrition Examination Survey (NHANES)
- 31,147 participants, median follow-up period of 14.6 years
- 24-hour dietary recalls of added sugars
 - sugar-sweetened beverages, grain-based desserts, fruit drinks, dairy desserts, candy, RTE cereals, and yeast breads
 - but NOT naturally occurring sugar - fruits & fruit juices
- Primary outcome: CV mortality

April 2014
Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults
JAMA
Added Sugar Consumption and CVD mortality?

<table>
<thead>
<tr>
<th>Added Sugar (% of calories)</th>
<th>(e.g. 2,000 calories/day) # tsp of Added Sugar</th>
<th>CVD Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4% of calories</td>
<td>(9 tsp)</td>
<td>HR 1.0</td>
</tr>
<tr>
<td>11.4% of calories</td>
<td>(14 tsp)</td>
<td>HR 1.09</td>
</tr>
<tr>
<td>14.8% of calories</td>
<td>(18 tsp)</td>
<td>HR 1.23</td>
</tr>
<tr>
<td>18.7% of calories</td>
<td>(23 tsp)</td>
<td>HR 1.49</td>
</tr>
<tr>
<td>25.2% of calories</td>
<td>(32 tsp)</td>
<td>HR 2.43</td>
</tr>
</tbody>
</table>

April 2014

Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults

JAMA
Diet Drinks

Diet Drink Consumption and CV Risks?

– Women’s Health Initiative Observational Study
– 59,614 women, mean age 62.8 yo, no existing CV disease
– 12-oz. diet drink consumption e.g. 2/day (highest) vs. 0-3/month (lowest)
– Primary outcome: CAD, CHF, MI, coronary revascularization, ischemic stroke, PAD, and CVD death
– Adjustment for BMI, smoking, HRT, physical activity, calorie intake, salt intake, DM, HTN, cholesterol, and sugar-sweetened beverage intake

April 2014

Diet Drink Consumption and the Risk of CV Events:
A Report From the Women’s Health Initiative Prevention
Journal of the American College of Cardiology
Diet Drinks

Diet Drink Consumption and CV Risks?

<table>
<thead>
<tr>
<th>Diet Drink</th>
<th>CVD Events</th>
<th>CVD Mortality</th>
<th>Overall Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2/day vs. 0-3/month</td>
<td>↑ (HR 1.3)</td>
<td>↑ (HR 1.5)</td>
<td>↑ (HR 1.3)</td>
</tr>
</tbody>
</table>

April 2014

Diet Drink Consumption and the Risk of CV Events: A Report From the Women's Health Initiative Prevention Journal of the American College of Cardiology
Latest Update: Physical Activity
Physical Activity

High Aerobic Exercise Early in Life to Reduce MI Later in Life?

– Cohort study of 743,498 Swedish men (army enrollment), 18 yo
– Aerobic fitness and muscle strength were measured
 • 5 standard deviations
 – 1st = highest performance
 – 5th = lowest performance
– Median follow-up period of 34 years
– Adjustment for age, BMI, diseases, education, BP, socioeconomic factors
– Primary outcome: MI

2014 January
High Aerobic Fitness in Late Adolescence Is Associated With a Reduced Risk of MI Later in Life: A Nationwide Cohort Study in Men
European Heart Journal
High Aerobic Exercise Early in Life to Reduce MI Later in Life?

<table>
<thead>
<tr>
<th>Level of Physical Fitness</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st standard (Highest performance)</td>
<td>HR 1.0</td>
</tr>
<tr>
<td>2nd standard</td>
<td>↑ HR 1.16</td>
</tr>
<tr>
<td>3rd standard</td>
<td>↑ HR 1.34</td>
</tr>
<tr>
<td>4th standard</td>
<td>↑ HR 1.39</td>
</tr>
<tr>
<td>5th standard (Lowest performance)</td>
<td>↑ HR 1.69</td>
</tr>
<tr>
<td>For every 1 standard deviation</td>
<td>Δ 18%</td>
</tr>
</tbody>
</table>

2014 January

High Aerobic Fitness in Late Adolescence Is Associated With a Reduced Risk of MI Later in Life: A Nationwide Cohort Study in Men

European Heart Journal
Physical Activity

High Aerobic Exercise Early in Life to Reduce MI Later in Life?

<table>
<thead>
<tr>
<th>Level of Physical Fitness & BMI</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Same BMI Group) Lowest performance vs. Highest performance</td>
<td>↑ HR 1.34-2.57 vs. HR 1.0</td>
</tr>
<tr>
<td>(Same performance) Obese (BMI>30) vs. Lean (BMI 18.5)</td>
<td>↑ HR 2.44-4.65 vs. HR 1.0</td>
</tr>
</tbody>
</table>

2014 January

High Aerobic Fitness in Late Adolescence Is Associated With a Reduced Risk of MI Later in Life: A Nationwide Cohort Study in Men

European Heart Journal
Physical Activity

High Aerobic Exercise Early in Life to Reduce MI Later in Life?

<table>
<thead>
<tr>
<th>Level of Physical Fitness & BMI</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese (BMI >30) + Highest performance vs. Lean (BMI 18.5) + Lowest performance</td>
<td>↑ HR 1.71</td>
</tr>
<tr>
<td>Overweight (BMI 25-30) + Highest performance vs. Normal (BMI 18.5-25) + Lowest performance</td>
<td>↑ HR 1.31</td>
</tr>
</tbody>
</table>

2014 January

High Aerobic Fitness in Late Adolescence Is Associated With a Reduced Risk of MI Later in Life: A Nationwide Cohort Study in Men

European Heart Journal
Summary
Summary
General Recommendation

• Dietary Patterns
 • *Emphasize intake of vegetables, fruits, whole grains, legumes, nuts*
 – Include low-fat dairy products, poultry, fish; limit red meats
 • *Reduce Total fat, SFA and TFA*
 – Replace SFA, TFA with MUFA, PUFA (e.g. healthy meats, oils, nuts)
 • *Limit intake of sweets, sugar-sweetened beverages*
 • *Adapt to appropriate calorie requirements to maintain a normal BMI*

• Sodium Intake
 • *Lower sodium intake*
 • *Consume no more than 2,300 mg/day of sodium*
 • *Further reduction to 1,500 mg/day may be beneficial for some*
 • *Combine DASH dietary pattern with lower sodium intake (for BP reduction)*
Summary
General Recommendation

• Supplements
 • Antioxidant supplements are not recommended
 • Beta carotene, Vitamin E, and Vitamin A supplements should be avoided
 • Fish oil and Vitamin D supplements have not been proven to provide CV health benefit
 • Avoid Red Yeast Rice because of highly variable products and possible contamination

• Physical activity
 • Advise aerobic physical activity
 • 3-4 sessions/week, 40 minute/sessions, moderate to vigorous intensity
 • Additional benefits occur with higher intensity, frequency and duration
Resources

• 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk
 – https://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437740.48606.d1.full.pdf+html

• Heart Disease and Stroke Statistics 2014 Update: A Report From the American Heart Association,
 – http://circ.ahajournals.org/content/early/2013/12/18/01.cir.0000441139.02102.80.full.pdf+html

• The U.S. Preventive Services Task Force (USPSTF)

• U.S. Department of Agriculture (USDA) National Nutrient Database for Standard Reference

• Dietary Guidelines for Americans, 2010

• CDC Statistics on Nutrition and Diet

• National Heart, Lung, and Blood Institute DASH Eating Plan
 – http://www.nhlbi.nih.gov/health/health-topics/topics/dash/

• National Institute of Health on Supplements
 – http://ods.od.nih.gov/factsheets/list-all/

• Physical Activity Guidelines for Americans 2008
 – http://www.health.gov/paguidelines/guidelines/